Vtome.ru - электронная библиотека

Data Driven Strategies: Theory and Applications

  • Добавил: literator
  • Дата: 21-02-2023, 02:29
  • Комментариев: 0
Data Driven Strategies: Theory and ApplicationsНазвание: Data Driven Strategies: Theory and Applications
Автор: Wang Jianhong, Ricardo A. Ramirez-Mendoza, Ruben Morales-Menendez
Издательство: CRC Press
Год: 2023
Страниц: 363
Язык: английский
Формат: pdf (true)
Размер: 11.3 MB

A key challenge in science and engineering is to provide a quantitative description of the systems under investigation, leveraging the noisy data collected. Such a description may be a complete mathematical model or a mechanism to return controllers corresponding to new, unseen inputs. Recent advances in the theories are described in detail, along with their applications in engineering. The book aims to develop model-free system analysis and control strategies, i.e., data-driven control from theoretical analysis and engineering applications based only on measured data. The study aims to develop system identification, and combination in advanced control theory, i.e., data-driven control strategy as system and controller are generated from measured data directly. The book reviews the development of system identification and its combination in advanced control theory, i.e., data-driven control strategy, as they all depend on measured data.

Firstly, data-driven identification is developed for the closed-loop, nonlinear system and model validation, i.e., obtaining model descriptions from measured data. Secondly, the data-driven idea is combined with some control strategies to be considered data-driven control strategies, such as data-driven model predictive control, data-driven iterative tuning control, and data-driven subspace predictive control. Thirdly data-driven identification and data-driven control strategies are applied to interested engineering. In this context, the book provides algorithms to perform state estimation of dynamical systems from noisy data and some convex optimization algorithms through identification and control problems.

Table of Contents:
Introduction. Data driven model predictive control. Data driven identification for closed loop system. Data driven model validation for closed loop system. Data driven identification for nonlinear system. Data driven iterative tuning control. Data driven applications. Data driven subspace prediction control. Conclusions and outlook.

Скачать Data Driven Strategies: Theory and Applications



ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!










ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.