- Добавил: literator
- Дата: 3-05-2023, 03:22
- Комментариев: 0
Название: Введение в автоматизированное машинное обучение (AutoML)
Автор: Хуттер Ф., Коттхофф Л., Ваншорен Х.
Издательство: ДМК Пресс
Год: 2023
Страниц: 258
Язык: русский
Формат: pdf
Размер: 16.4 MB
Ошеломляющий успех коммерческих приложений машинного обучения (machine learning – ML) и быстрый рост этой отрасли создали высокий спрос на готовые методы ML, которые можно легко использовать без специальных знаний. Однако и сегодня успех практического применения в решающей степени зависит от экспертов – людей, которые вручную выбирают подходящие архитектуры и их гиперпараметры. Методы AutoML нацелены на устранение этого узкого места путем построения систем ML, способных к автоматической оптимизации и самонастройке независимо от типа входных данных. В этой книге впервые представлен всеобъемлющий обзор базовых методов автоматизированного машинного обучения (AutoML). Издание послужит отправной точкой для изучения этой быстро развивающейся области; тем, кто уже использует AutoML в своей работе, книга пригодится в качестве справочника. Область автоматизированного машинного обучения нацелена на принятие конструкторских решений на основе данных объективным и автоматизированным способом: пользователь просто предоставляет данные, а система AutoML автоматически находит оптимальное решение для этого конкретного случая.
Автор: Хуттер Ф., Коттхофф Л., Ваншорен Х.
Издательство: ДМК Пресс
Год: 2023
Страниц: 258
Язык: русский
Формат: pdf
Размер: 16.4 MB
Ошеломляющий успех коммерческих приложений машинного обучения (machine learning – ML) и быстрый рост этой отрасли создали высокий спрос на готовые методы ML, которые можно легко использовать без специальных знаний. Однако и сегодня успех практического применения в решающей степени зависит от экспертов – людей, которые вручную выбирают подходящие архитектуры и их гиперпараметры. Методы AutoML нацелены на устранение этого узкого места путем построения систем ML, способных к автоматической оптимизации и самонастройке независимо от типа входных данных. В этой книге впервые представлен всеобъемлющий обзор базовых методов автоматизированного машинного обучения (AutoML). Издание послужит отправной точкой для изучения этой быстро развивающейся области; тем, кто уже использует AutoML в своей работе, книга пригодится в качестве справочника. Область автоматизированного машинного обучения нацелена на принятие конструкторских решений на основе данных объективным и автоматизированным способом: пользователь просто предоставляет данные, а система AutoML автоматически находит оптимальное решение для этого конкретного случая.