Vtome.ru - электронная библиотека

  • Добавил: literator
  • Дата: 4-01-2024, 09:45
  • Комментариев: 0
Название: Deep Learning for Engineers
Автор: Tariq M. Arif, Md Adilur Rahim
Издательство: CRC Press
Год: 2024
Страниц: 170
Язык: английский
Формат: pdf (true)
Размер: 18.9 MB

Deep Learning for Engineers introduces the fundamental principles of Deep Learning along with an explanation of the basic elements required for understanding and applying Deep Learning models. As a comprehensive guideline for applying Deep Learning models in practical settings, this book features an easy-to-understand coding structure using Python and PyTorch with an in-depth explanation of four typical deep learning case studies on image classification, object detection, semantic segmentation, and image captioning. The fundamentals of convolutional neural network (CNN) and recurrent neural network (RNN) architectures and their practical implementations in science and engineering are also discussed. Some basic knowledge of Python programming is required to follow this book. However, no chapter is devoted to teaching Python programming. Instead, we demonstrated relevant Python commands followed by brief descriptions throughout this book. A common roadblock to exploring the deep learning field by engineering students, researchers, or non-data science professionals is the variation of probabilistic theories and the notations used in Data Science or Computer Science books. In order to avoid this complexity, in this book, we mainly focus on the practical implementation part of deep learning theory using Python programming. This book includes exercise problems for all case studies focusing on various fine-tuning approaches in Deep Learning. Science and engineering students at both undergraduate and graduate levels, academic researchers, and industry professionals will find the contents useful.
  • Добавил: literator
  • Дата: 3-01-2024, 19:09
  • Комментариев: 0
Название: Data Science and Machine Learning for Non-Programmers: Using SAS Enterprise Miner
Автор: Dothang Truong
Издательство: CRC Press
Год: 2024
Страниц: 590
Язык: английский
Формат: pdf (true)
Размер: 35.9 MB

As data continues to grow exponentially, knowledge of Data Science and Machine Learning has become more crucial than ever. Machine Learning has grown exponentially; however, the abundance of resources can be overwhelming, making it challenging for new learners. This book aims to address this disparity and cater to learners from various non-technical fields, enabling them to utilize Machine Learning effectively. Adopting a hands-on approach, readers are guided through practical implementations using real datasets and SAS Enterprise Miner, a user-friendly data mining software that requires no programming. Throughout the chapters, two large datasets are used consistently, allowing readers to practice all stages of the data mining process within a cohesive project framework. This book also provides specific guidelines and examples on presenting data mining results and reports, enhancing effective communication with stakeholders. The book begins with Part I, introducing the core concepts of data science, data mining, and Machine Learning. My aim is to present these principles without overwhelming readers with complex math, empowering them to comprehend the underlying mechanisms of various algorithms and models. This foundational knowledge will enable readers to make informed choices when selecting the right tool for specific problems. In Part II, I focus on the most popular Machine Learning algorithms, including regression methods, decision trees, neural networks, ensemble modeling, principal component analysis, and cluster analysis.
  • Добавил: literator
  • Дата: 3-01-2024, 18:32
  • Комментариев: 0
Название: Geographic Data Science with Python
Автор: Sergio Rey, Dani Arribas-Bel, Levi John Wolf
Издательство: CRC Press
Год: 2023
Страниц: 411
Язык: английский
Формат: pdf (true)
Размер: 27.5 MB

This book provides the tools, the methods, and the theory to meet the challenges of contemporary Data Science applied to geographic problems and data. In the new world of pervasive, large, frequent, and rapid data, there are new opportunities to understand and analyze the role of geography in everyday life. Geographic Data Science with Python introduces a new way of thinking about analysis, by using geographical and computational reasoning, it shows the reader how to unlock new insights hidden within data. It presents concepts in a far more geographic way than competing textbooks, covering spatial data, mapping, and spatial statistics whilst covering concepts, such as clusters and outliers, as geographic concepts. Intended for data scientists, GIScientists, and geographers, the material provided in this book is of interest due to the manner in which it presents geospatial data, methods, tools, and practices in this new field.
  • Добавил: literator
  • Дата: 3-01-2024, 09:44
  • Комментариев: 0
Название: Image Processing and Machine Learning, Volume 1: Foundations of Image Processing
Автор: Erik Cuevas, Alma Nayeli Rodríguez
Издательство: CRC Press
Год: 2024
Страниц: 225
Язык: английский
Формат: pdf (true)
Размер: 40.9 MB

Image processing and Machine Learning are used in conjunction to analyze and understand images. Where image processing is used to pre-process images using techniques such as filtering, segmentation, and feature extraction, Machine Learning algorithms are used to interpret the processed data through classification, clustering, and object detection. This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches. Divided into two volumes, this first installment explores the fundamental concepts and techniques in image processing, starting with pixel operations and their properties and exploring spatial filtering, edge detection, image segmentation, corner detection, and geometric transformations. Our primary objective was to create a comprehensive textbook that serves as an invaluable resource for an image processing class. With this goal in mind, we carefully crafted a book that encompasses both the theoretical foundations and practical applications of the most prevalent image processing methods. From pixel operations to geometric transformations, spatial filtering to image segmentation, and edge detection to color image processing, we have meticulously covered a wide range of topics essential to understanding and working with images. Moreover, recognizing the increasing relevance of ML in image processing, we have incorporated fundamental ML concepts and their applications in this field. By introducing readers to these concepts, we aim to equip them with the necessary knowledge to leverage ML techniques for various image processing tasks. Volume 1 is organized in a way that allows readers to easily understand the goal of each chapter and reinforce their understanding through practical exercises using MATLAB programs.
  • Добавил: literator
  • Дата: 3-01-2024, 09:03
  • Комментариев: 0
Название: Image Processing and Machine Learning, Volume 2: Advanced Topics in Image Analysis and Machine Learning
Автор: Erik Cuevas, Alma Nayeli Rodríguez
Издательство: CRC Press
Год: 2024
Страниц: 239
Язык: английский
Формат: pdf (true)
Размер: 31.6 MB

Image processing and Machine Learning are used in conjunction to analyze and understand images. Where image processing is used to pre-process images using techniques such as filtering, segmentation, and feature extraction, Machine Learning algorithms are used to interpret the processed data through classification, clustering, and object detection. This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches. Divided into two volumes, this second installment explores the more advanced concepts and techniques in image processing, including morphological filters, color image processing, image matching, feature-based segmentation utilizing the mean shift algorithm, and the application of singular value decomposition for image compression. This second volume also incorporates several important Machine Learning techniques applied to image processing, building on the foundational knowledge introduced in Volume 1. Machine Learning (ML) is a branch of artificial intelligence (AI) that enables systems to learn from data and make informed predictions or decisions without the need for explicit programming. ML finds extensive applications in various domains. For instance, in automation, ML algorithms can automate tasks that would otherwise rely on human intervention, thereby reducing errors and enhancing overall efficiency. Predictive analytics is another area where ML plays a crucial role. By analyzing vast datasets, ML models can detect patterns and make predictions, facilitating applications such as stock market analysis, fraud detection, and customer behavior analysis. We have observed that students grasp the material more effectively when they have access to code that they can manipulate and experiment with. In line with this, our book utilizes MATLAB as the programming language for implementing the systems.
  • Добавил: Igor1977
  • Дата: 3-01-2024, 08:11
  • Комментариев: 0

Название: Unity. Полное руководство
Автор: Корнилов А.В.
Издательство: СПб.: Наука и техника
Год: 2021
Формат: pdf
Страниц: 496
Размер: 79 mb
Язык: Русский

В этой книге мы расскажем, как с использованием Unity (популярной меж­платформенной среды разработки компьютерных игр) вы сможете САМИ создавать свои игры и трехмерные миры, причем без лишних затрат и про­фессиональных навыков программирования.
Книга поделена на три части. Первая часть посвящена изучению интерфейса и основных возможностей Unity. Мы поговорим о двух- и трехмерных проек­тах; рассмотрим ключевые особенности Unity; узнаем, как использовать ассе­ты; подробном изучим интерфейс Unity; узнаем об игровых объектах, сценах, камерах, источниках света; создадим свои первые Unitу-проекты.
  • Добавил: literator
  • Дата: 3-01-2024, 07:31
  • Комментариев: 0
Название: Расширенная аналитика с PySpark: Практические примеры анализа больших наборов данных с использованием Python и Spark
Автор: Акаш Тандон, Сэнди Райза, Ури Ласерсон
Издательство: БХВ-Петербург
Год: 2023
Страниц: 226
Язык: русский
Формат: pdf, djvu
Размер: 36.3 MB

Книга посвящена практическим методам анализа больших объемов данных с использованием языка Python и фреймворка Spark, она знакомит с моделью программирования Spark и основами системы с открытым исходным кодом PySpark. Каждая глава описывает отдельный аспект анализа данных, показаны основы обработки данных в PySpark и Python на примере очистки данных, подробно освещается машинное обучение с помощью Spark. Книга поможет читателю понять, как устроен и работает весь конвейер PySpark для комплексной аналитики больших наборов данных: от создания и оценки моделей до очистки, предварительной обработки и исследования данных с особым акцентом на производственные приложения. Отдельные главы посвящены обработке изображений и библиотеке Spark NLP. Эта книга не рассказывает о достоинствах и недостатках PySpark. Книга знакомит с моделью программирования Spark и основами PySpark — API Python для Spark. Тем не менее она не претендует на то, чтобы служить справочником по Spark или быть исчерпывающим путеводителем по всем закоулкам Spark. Она также не претендует на роль справочника по машинному обучению, статистике или линейной алгебре, хотя во многих главах содержится небольшой вводный материал перед их использованием. Эта книга поможет читателю понять, как устроен и работает весь конвейер PySpark для комплексной аналитики больших наборов данных, а это не только создание и оценка моделей, но также очистка, предварительная обработка и исследование данных с особым акцентом на производственные приложения.
  • Добавил: literator
  • Дата: 2-01-2024, 23:01
  • Комментариев: 0
Название: Learn Programming with C An Easy Step-by-Step Self-Practice Book for Learning C
Автор: Sazzad M.S. Imran, Atiqur Rahman Ahad
Издательство: CRC Press
Год: 2024
Страниц: 580
Язык: английский
Формат: pdf (true)
Размер: 22.6 MB

Authored by two standout professors in the field of Computer Science and Technology with extensive experience in instructing, Learn Programming with C: An Easy Step-by Step Self-Practice Book for Learning C is a comprehensive and accessible guide to programming with one of the most popular languages. Meticulously illustrated with figures and examples, this book is a comprehensive guide to writing, editing, and executing C programs on different operating systems and platforms, as well as how to embed C programs into other applications and how to create one’s own library. A variety of questions and exercises are included in each chapter to test the readers’ knowledge. Written for the novice C programmer, especially undergraduate and graduate students, this book’s line-by-line explanation of code and succinct writing style makes it an excellent companion for classroom teaching, learning, and programming labs. C is a programming language with which every software developer should become familiar. Though numerous books are available on C programming language, most of the example programs are written without algorithms or any flowchart in those books. As a result, it becomes difficult for a student to comprehend the core of a programming language through a self-learning approach. Our experience in teaching C underscores the importance of presenting C programs by the flowchart solution first, then the pseudocode solution, and finally the actual C code with the line-by-line explanation. It is written for C programming language courses/modules at the undergraduate and graduate levels - mostly for beginners.
  • Добавил: literator
  • Дата: 2-01-2024, 21:18
  • Комментариев: 0
Название: Mastering TypeScript: A Comprehensive Guide to Learn TypeScript Programming
Автор: Cybellium Ltd
Издательство: Cybellium Ltd
Год: 2023
Страниц: 314
Язык: английский
Формат: epub
Размер: 10.2 MB

Shaping the Frontier of Web Development. Delve into the dynamic world of TypeScript—a powerful superset of jаvascript, designed to enhance productivity, facilitate large-scale applications, and push web development boundaries. Whether you're a frontend enthusiast, a backend guru, or someone in-between, "Mastering TypeScript" stands as your comprehensive companion in this journey. TypeScript is an open-source programming language that was developed and is maintained by Microsoft. The primary objective of TypeScript is to extend the capabilities of jаvascript by adding static types. The significance of this can be best understood when we compare it to jаvascript, a dynamically typed language. jаvascript, since its inception, has been one of the most popular programming languages for web development. However, as applications grow larger and more complex, certain limitations inherent to jаvascript become apparent. jаvascript being a dynamically typed language means that variable types are checked at runtime, and this lack of type safety can lead to runtime errors that are hard to track down and debug. TypeScript addresses this challenge by introducing static types. Static types allow developers to annotate their code with type information, which is then used by the TypeScript compiler for type checking at compile-time rather than runtime. This early error detection helps developers catch and fix errors more efficiently, resulting in more robust, reliable code.
  • Добавил: literator
  • Дата: 2-01-2024, 19:35
  • Комментариев: 0
Название: Handbook of Artificial Intelligence Applications for Industrial Sustainability: Concepts and Practical Examples
Автор: Vikas Garg, Richa Goel, Pooja Tiwari
Издательство: CRC Press
Год: 2024
Страниц: 325
Язык: английский
Формат: pdf (true)
Размер: 35.6 MB

The subject of Artificial Intelligence (AI) is continuing on its journey of affecting each and every individual and will keep on this path in the times to come. This handbook is a collection of topics on the application of artificial intelligence applications for sustainability in different areas. It provides an insight into the various uses of concepts and practical examples for different domains all in one place, which makes it unique and important for the potential reader. Handbook of Artificial Intelligence Applications for Industrial Sustainability: Concepts and Practical Examples examines the influence of AI and how it can be used in several industries to improve corporate performance, reduce security concerns, improve customer experience, and ultimately generate value for customers and maximize profits. The handbook offers practical examples, concepts, and applications that provide an easy understanding and implementation process. Covering topics that include examination of Artificial Intelligence applications of enterprises in terms of sustainability in the marketing, sustainable green fashion industry, e-​commerce industry, banking services, HRM, Artificial Intelligence models in pattern recognition, concepts challenges and applications, agricultural sector, sustainable education, workforce analytics, talent management, fraud detection, cyber security will have the potential to contribute to sustainability in two ways: directly by making certain processes more sustainable, and indirectly by encouraging people to live more environmentally friendly lives. This handbook will provide insight to customers, managers, professionals, engineers, researchers, and students on the various uses of AI and sustainability in different domains. All of this needed information compiled into one handbook makes it unique and important for the engineering, business, and Computer Science communities.