Vtome.ru - электронная библиотека

Federated Learning for Smart Communication using IoT Application

  • Добавил: literator
  • Дата: 21-09-2024, 03:03
  • Комментариев: 0
Название: Federated Learning for Smart Communication using IoT Application
Автор: Kaushal Kishor, Parma Nand, Vishal Jain, Neetesh Saxena, Gaurav Agarwal, Rani Astya
Издательство: CRC Press
Год: 2025
Страниц: 275
Язык: английский
Формат: pdf (true), epub
Размер: 12.8 MB

The effectiveness of Federated Learning (FL) in high‑performance information systems and informatics‑based solutions for addressing current information support requirements is demonstrated in this book. To address heterogeneity challenges in Internet of Things (IoT) contexts, Federated Learning for Smart Communication using IoT Application analyses the development of personalized Federated Learning algorithms capable of mitigating the detrimental consequences of heterogeneity in several dimensions. It includes case studies of IoT‑based human activity recognition to show the efficacy of personalized Federated Learning for intelligent IoT applications.

Federated Learning (FL) is leading the way in revolutionary developments in Machine Learning, transforming the traditional field of centralized model training. Fundamentally, FL is a novel technique that enables a network of dispersed devices to jointly train Machine Learning models. FL prioritizes privacy above central processing of raw data, as is the case with traditional approaches. Individual devices—such as cellphones, edge devices, or other endpoints—contribute to model training under this novel paradigm without disclosing private information. We will explore the fundamentals of FL, its uses, and its potential to revolutionize the ever-evolving field of Artificial Intelligence (AI) as we delve into its depths.

Features

• Demonstrates how federated learning offers a novel approach to building personalized models from data without invading users’ privacy.
• Describes how federated learning may assist in understanding and learning from user behavior in IoT applications while safeguarding user privacy.
• Presents a detailed analysis of current research on federated learning, providing the reader with a broad understanding of the area.
• Analyses the need for a personalized federated learning framework in cloud‑edge and wireless‑edge architecture for intelligent IoT applications.
• Comprises real‑life case illustrations and examples to help consolidate understanding of topics presented in each chapter.

This book is recommended for anyone interested in Federated Learning‑based intelligent algorithms for smart communications.

Скачать Federated Learning for Smart Communication using IoT Application












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.