Название: Federated Deep Learning for Healthcare: A Practical Guide with Challenges and Opportunities Автор: Amandeep Kaur, Chetna Kaushal, Md. Mehedi Hassan, Si Thu Aung Издательство: CRC Press Год: 2025 Страниц: 267 Язык: английский Формат: pdf (true) Размер: 10.1 MB
This book provides a practical guide to Federated Deep Learning for healthcare including fundamental concepts, framework, and the applications comprising of domain adaptation, model distillation, and transfer learning. It covers concerns in model fairness, data bias, regulatory compliance, and ethical dilemmas. It investigates several privacy-preserving methods like homomorphic encryption, secure multi-party computation, and differential privacy. It will enable readers to build and implement Federated Learning systems that safeguard private medical information. Features:
• Offers a thorough introduction of federated deep learning methods designed exclusively for medical applications. • Investigates privacy-preserving methods with emphasis on data security and privacy. • Discusses healthcare scaling and resource efficiency considerations. • Examines methods for sharing information among various healthcare organizations while retaining model performance.
This book is aimed at graduate students and researchers in Federated Learning, Data Science, AI/Machine Learning, and healthcare.
Скачать Federated Deep Learning for Healthcare: A Practical Guide with Challenges and Opportunities
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.