Vtome.ru - электронная библиотека

Machine Learning in Python for Everyone

  • Добавил: literator
  • Дата: 28-11-2023, 12:49
  • Комментариев: 0
Название: Machine Learning in Python for Everyone
Автор: Jonathan Wayne Korn
Издательство: Independently published
Год: 2023
Страниц: 520
Язык: английский
Формат: pdf
Размер: 35.5 MB

"Machine Learning in Python for Everyone" is your comprehensive guide to mastering Machine Learning with the Python programming language. Whether you're a novice looking to embark on your Data Science journey or an experienced practitioner aiming to refine your skills, this book provides a structured and hands-on approach to understanding and implementing Machine Learning concepts.

Starting with the fundamentals, the book introduces you to Machine Learning algorithms, data manipulation, and analysis tools in Python. Through practical examples, you'll learn to collect, preprocess, and explore data, gaining insights into data-driven decision-making. The book covers regression, classification, and time series forecasting, equipping you with the knowledge to build predictive models effectively. You'll delve into model evaluation techniques, feature engineering, and model interpretation, ensuring you can not only create models but also optimize their performance.

By the end of the book, you'll be proficient in various Machine Learning algorithms and visualization techniques, ready to tackle real-world challenges with confidence. "Machine Learning in Python for Everyone" is your gateway to unleashing the power of Machine Learning for practical applications in Python.

Скачать Machine Learning in Python for Everyone



ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!










ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.