Vtome.ru - электронная библиотека

Distributed Machine Learning with PySpark: Migrating Effortlessly from Pandas and Scikit-Learn

  • Добавил: literator
  • Дата: 6-02-2024, 06:36
  • Комментариев: 0
Название: Distributed Machine Learning with PySpark: Migrating Effortlessly from Pandas and Scikit-Learn
Автор: Abdelaziz Testas
Издательство: Apress
Год: 2023
Страниц: 500
Язык: английский
Формат: pdf (true), epub (true), mobi
Размер: 10.1 MB

Migrate from Pandas and Scikit-learn to PySpark to handle vast amounts of data and achieve faster data processing time. This book will show you how to make this transition by adapting your skills and leveraging the similarities in syntax, functionality, and interoperability between these tools.

Distributed Machine Learning with PySpark offers a roadmap to data scientists considering transitioning from small data libraries (pandas/scikit-learn) to big data processing and Machine Learning with PySpark. You will learn to translate Python code from Pandas/Scikit-learn to PySpark to preprocess large volumes of data and build, train, test, and evaluate popular Machine Learning algorithms such as linear and logistic regression, decision trees, random forests, support vector machines, Naive Bayes, and neural networks.

After completing this book, you will understand the foundational concepts of data preparation and machine learning and will have the skills necessary to apply these methods using PySpark, the industry standard for building scalable ML data pipelines.

What You Will Learn:
Master the fundamentals of supervised learning, unsupervised learning, NLP, and recommender systems
Understand the differences between PySpark, Scikit-learn, and Pandas
Perform linear regression, logistic regression, and decision tree regression with Pandas, Scikit-learn, and PySpark
Distinguish between the pipelines of PySpark and Scikit-learn

Who This Book Is For:
Data scientists, data engineers, and Machine Learning practitioners who have some familiarity with Python, but who are new to distributed machine learning and the PySpark framework.

Скачать Distributed Machine Learning with PySpark: Migrating Effortlessly from Pandas and Scikit-Learn



ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!










ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.