Название: Neural Networks with Python: Design CNNs, Transformers, GANs and capsule networks using Tensorflow and Keras Автор: Mei Wong Издательство: GitforGits Год: November 2023 Страниц: 253 Язык: английский Формат: pdf, epub (true), mobi Размер: 10.1 MB
"Neural Networks with Python" serves as an introductory guide for those taking their first steps into neural network development with Python. It's tailored to assist beginners in understanding the foundational elements of neural networks and to provide them with the confidence to delve deeper into this intriguing area of machine learning.
In this book, readers will embark on a learning journey, starting from the very basics of Python programming, progressing through essential concepts, and gradually building up to more complex neural network architectures. The book simplifies the learning process by using relatable examples and datasets, making the concepts accessible to everyone. You will be introduced to various neural network architectures such as Feedforward, Convolutional, and Recurrent Neural Networks, among others. Each type is explained in a clear and concise manner, with practical examples to illustrate their applications. The book emphasizes the real-world applications and practical aspects of neural network development, rather than just theoretical knowledge.
Readers will also find guidance on how to troubleshoot and refine their neural network models. The goal is to equip you with a solid understanding of how to create efficient and effective neural networks, while also being mindful of the common challenges that may arise.
By the end of your journey with this book, you will have a foundational understanding of neural networks within the Python ecosystem and be prepared to apply this knowledge to real-world scenarios. "Neural Networks with Python" aims to be your stepping stone into the vast world of machine learning, empowering you to build upon this knowledge and explore more advanced topics in the future.
Key Learnings: Master Python for Machine Learning, from setup to complex models. Gain flexibility with diverse neural network architectures for various problems. Hands-on experience in building, training, and fine-tuning neural networks. Learn strategic approaches for troubleshooting and optimizing neural models. Grasp advanced topics like autoencoders, capsule networks, and attention mechanisms. Acquire skills in crucial data preprocessing and augmentation techniques. Understand and apply optimization techniques and hyperparameter tuning. Implement an end-to-end machine learning project, from data to deployment.
Chapter 1: Python, Tensorflow, and your First Neural Network Chapter 2: Deep Dive into Feedforward Networks Chapter 3: Convolutional Networks for Visual Tasks Chapter 4: Recurrent Networks for Sequence Data Chapter 5: Data Generation with Generative Adversarial Networks Chapter 6: Transformers for Complex Tasks Chapter 7: Autoencoders for Data Compression and Generation Chapter 8: Capsule Networks
Скачать Neural Networks with Python: Design CNNs, Transformers, GANs and capsule networks using Tensorflow and Keras
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.