Vtome.ru - электронная библиотека

Privacy-Preserving Machine Learning (Final Release)

  • Добавил: literator
  • Дата: 25-03-2023, 16:47
  • Комментариев: 0
Privacy-Preserving Machine Learning (Final Release)Название: Privacy-Preserving Machine Learning (Final Release)
Автор: J. Morris Chang, Di Zhuang, G. Dumindu Samaraweera
Издательство: Manning Publications
Год: 2023
Страниц: 335
Язык: английский
Формат: pdf (true)
Размер: 26.4 MB

Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your Machine Learning models.

In Privacy Preserving Machine Learning, you will learn:

Privacy considerations in machine learning
Differential privacy techniques for machine learning
Privacy-preserving synthetic data generation
Privacy-enhancing technologies for data mining and database applications
Compressive privacy for machine learning

Privacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your Machine Learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create Machine Learning systems that preserve user privacy without sacrificing data quality and model performance.

about the technology
Machine Learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end.

about the book
Privacy Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter.

what's inside

Differential and compressive privacy techniques
Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning
Privacy-preserving synthetic data generation
Enhanced privacy for data mining and database applications

about the reader
For machine learning engineers and developers. Examples in Python and Java.

Скачать Privacy-Preserving Machine Learning (Final Release)












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.