Vtome.ru - электронная библиотека

Fast Python High performance techniques for large datasets (MEAP v10)

  • Добавил: literator
  • Дата: 12-01-2023, 18:58
  • Комментариев: 0
Fast Python High performance techniques for large datasets (MEAP v10)Название: Fast Python High performance techniques for large datasets (MEAP v10)
Автор: Tiago Antao
Издательство: Manning Publications
Год: 2022
Страниц: 373
Язык: английский
Формат: pdf, epub
Размер: 10.9 MB

Master these effective techniques to reduce costs and run times, handle huge datasets, and implement complex machine learning applications efficiently in Python.

Fast Python is your guide to optimizing every part of your Python-based data analysis process, from the pure Python code you write to managing the resources of modern hardware and GPUs. You'll learn to rewrite inefficient data structures, improve underperforming code with multithreading, and simplify your datasets without sacrificing accuracy.

about the technology
Fast, accurate systems are vital for handling the huge datasets and complex analytical algorithms that are common in modern data science. Python programmers need to boost performance by writing faster pure-Python programs, optimizing the use of libraries, and utilizing modern multi-processor hardware; Fast Python shows you how.

about the book
Fast Python is a hands-on guide to writing Python code that can process more data, faster, and with less resources. It takes a holistic approach to Python performance, showing you how your code, libraries, and computing architecture interact and can be optimized together.

You know all the basic Python language features: most of its syntax and a few of its built-in libraries. You are using, or have heard of libraries like NumPy, Pandas or SciPy. You might have dabbled with the multiprocessing module, but you would definitely like to know more. You know that you can rewrite parts of your Python code in a lower level language or system like Cython, Numba or C. You are keen on exploring new ways to make your code more efficient like offloading code to GPUs.

Written for experienced practitioners, this book dives right into practical solutions for improving computation and storage efficiency. You'll experiment with fun and interesting examples such as rewriting games in lower-level Cython and implementing a MapReduce framework from scratch. Finally, you'll go deep into Python GPU computing and learn how modern hardware has rehabilitated some former antipatterns and made counterintuitive ideas the most efficient way of working.

Скачать Fast Python High performance techniques for large datasets (MEAP V10)












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.