Название: Advanced Data Analytics Using Python: With Architectural Patterns, Text and Image Classification, and Optimization Techniques, 2nd Edition Автор: Sayan Mukhopadhyay, Pratip Samanta Издательство: Apress Год: 2023 Страниц: 259 Язык: английский Формат: pdf (true), epub (true) Размер: 13.5 MB
Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing (NLP), and computer vision in the cloud environment.
Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build Machine Learning and Deep Learning models using transfer learning.
Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analytics with reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application.
What You'll Learn: Build intelligent systems for enterprise Review time series analysis, classifications, regression, and clustering Explore supervised learning, unsupervised learning, reinforcement learning, and transfer learning Use cloud platforms like GCP and AWS in data analytics Understand Covers design patterns in Python
Who This Book Is For: Data scientists and software developers interested in the field of data analytics.
Скачать Advanced Data Analytics Using Python: With Architectural Patterns, Text and Image Classification, 2nd Edition
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.