Vtome.ru - электронная библиотека

Machine Learning from Weak Supervision : An Empirical Risk Minimization Approach

  • Добавил: literator
  • Дата: 24-09-2022, 13:43
  • Комментариев: 0
Machine Learning from Weak Supervision : An Empirical Risk Minimization ApproachНазвание: Machine Learning from Weak Supervision : An Empirical Risk Minimization Approach
Автор: Masashi Sugiyama, Han Bao, Takashi Ishida
Издательство: The MIT Press
Год: 2022
Страниц: 325
Язык: английский
Формат: pdf
Размер: 37.1 MB

Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization.

Standard Machine Learning (ML) techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom.

The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation.

Скачать Machine Learning from Weak Supervision : An Empirical Risk Minimization Approach












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.