Vtome.ru - электронная библиотека

Data Visualization on the Web with Python and jаvascript: Scrape, Clean & Transform Your Data, 2nd Edition (Early Release)

  • Добавил: literator
  • Дата: 29-09-2021, 21:13
  • Комментариев: 0
Data Visualization on the Web with Python and Javascript: Scrape, Clean & Transform Your Data, 2nd Edition (Early Release)Название: Data Visualization on the Web with Python and jаvascript: Scrape, Clean & Transform Your Data, 2nd Edition (Early Release)
Автор: Kyran Dale
Издательство: O’Reilly Media, Inc.
Год: 2021-09-29
Страниц:
Язык: английский
Формат: epub
Размер: 10.1 MB

How do you turn raw, unprocessed, or malformed data into dynamic, interactive web visualizations? In this practical book, author Kyran Dale shows data scientists and analysts--as well as Python and jаvascript developers--how to create the ideal toolchain for the job. By providing engaging examples and stressing hard-earned best practices, this guide teaches you how to leverage the power of best-of-breed Python and jаvascript libraries.

Python provides accessible, powerful, and mature libraries for scraping, cleaning, and processing data. And while jаvascript is the best language when it comes to programming web visualizations, its data processing abilities can't compare with Python's. Together, these two languages are a perfect complement for creating a modern web-visualization toolchain. This book gets you started.

Python’s Matplotlib and its family of extensions (such as the statistically focused Seaborn) form a mature and very customizable plotting ecosystem. Matplotlib plots can be used interactively by IPython (the Qt and Notebook versions), providing a very powerful and intuitive way of finding interesting nuggets in your data.

You'll learn how to:

Obtain data you need programmatically, using scraping tools or web APIs: Requests, Scrapy, Beautiful Soup
Clean and process data using Python's heavyweight data processing libraries within the NumPy ecosystem: Jupyter notebooks with Pandas+Matplotlib+Seaborn
Deliver the data to a browser with static files or by using Flask, the lightweight Python server, and a RESTful API
Pick up enough web development skills (HTML, CSS, JS) to get your visualized data on the web
Use the data you've mined and refined to create web charts and visualizations with Plotly, D3, Leaflet, and other libraries

Скачать Data Visualization on the Web with Python and jаvascript: Scrape, Clean & Transform Your Data, 2nd Edition (Early Release)












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.