Название: Practical Data Science with Jupyter: Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter Автор: Prateek Gupta Издательство: Publications Год: 2021 Формат: ePUB, PDF Страниц: 654 Размер: 35 Mb Язык: English
This book begins with an introduction to Data Science followed by the Python concepts. The readers will understand how to interact with various database and Statistics concepts with their Python implementations. You will learn how to import various types of data in Python, which is the first step of the data analysis process. Once you become comfortable with data importing, you will clean the dataset and after that will gain an understanding about various visualization charts. This book focuses on how to apply feature engineering techniques to make your data more valuable to an algorithm. The readers will get to know various Machine Learning Algorithms, concepts, Time Series data, and a few real-world case studies. This book also presents some best practices that will help you to be industry-ready.
This book focuses on how to practice data science techniques while learning their concepts using Python and Jupyter. This book is a complete answer to the most common question that how can you get started with Data Science instead of explaining Mathematics and Statistics behind the Machine Learning Algorithms.
What you will learn ● Rapid understanding of Python concepts for data science applications. ● Understand and practice how to run data analysis with data science techniques and algorithms. ● Learn feature engineering, dealing with different datasets, and most trending machine learning algorithms. ● Become self-sufficient to perform data science tasks with the best tools and techniques.
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.