Название: Deep Learning with PyTorch Step-by-Step: A Beginner's Guide Автор: Daniel Voigt Godoy Издательство: Leanpub Год: 2021 Формат: PDF Страниц: 1187 Размер: 22,2 Mb Язык: English
If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) The book covers from the basics of gradient descent all the way up to fine-tuning large NLP models (BERT and GPT-2) using HuggingFace. It is divided into four parts:
Part I: Fundamentals (gradient descent, training linear and logistic regressions in PyTorch) Part II: Computer Vision (deeper models and activation functions, convolutions, transfer learning, initialization schemes) Part III: Sequences (RNN, GRU, LSTM, seq2seq models, attention, self-attention, transformers) Part IV: Natural Language Processing (tokenization, embeddings, contextual word embeddings, ELMo, BERT, GPT-2) This is not a typical book: most tutorials start with some nice and pretty image classification problem to illustrate how to use PyTorch. It may seem cool, but I believe it distracts you from the main goal: how PyTorch works? In this book, I present a structured, incremental, and from first principles approach to learn PyTorch (and get to the pretty image classification problem in due time).
Moreover, this is not a formal book in any way: I am writing this book as if I were having a conversation with you, the reader. I will ask you questions (and give you answers shortly afterward) and I will also make (silly) jokes.
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.