Название: Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications Автор: Hoss Belyadi, Alireza Haghighat Издательство: Gulf Professional Publishing, Elsevier Год: 2021 Страниц: 461 Язык: английский Формат: pdf (true) Размер: 44.8 MB
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand Machine Learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning.
Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.
Скачать Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.