Handbook of Grammatical Evolution
- Добавил: alex66
- Дата: 12-03-2021, 22:04
- Комментариев: 0
Название: Handbook of Grammatical Evolution
Автор: Editors Conor Ryan, Michael O’Neill, JJ Collins
Издательство: Springer
Год: 2018
Страниц: 497
Размер: 12.58 МБ
Формат: PDF
Язык: English
This handbook offers a comprehensive treatise on Grammatical Evolution (GE), a grammar-based Evolutionary Algorithm that employs a function to map binary strings into higher-level structures such as programs. GE's simplicity and modular nature make it a very flexible tool. Since its introduction almost twenty years ago, researchers have applied it to a vast range of problem domains, including financial modelling, parallel programming and genetics. Similarly, much work has been conducted to exploit and understand the nature of its mapping scheme, triggering additional research on everything from different grammars to alternative mappers to initialization.
The book first introduces GE to the novice, providing a thorough description of GE along with historical key advances. Two sections follow, each composed of chapters from international leading researchers in the field. The first section concentrates on analysis of GE and its operation, giving valuable insight into set up and deployment. The second section consists of seven chapters describing radically different applications of GE.
The contributions in this volume are beneficial to both novices and experts alike, as they detail the results and researcher experiences of applying GE to large scale and difficult problems.
Topics include:
Grammar design
Bias in GE
Mapping in GE
Theory of disruption in GE
Structured GE
Geometric semantic GE
GE and semantics
Multi- and Many-core heterogeneous parallel GE
Comparing methods to creating constants in GE
Financial modelling with GE
Synthesis of parallel programs on multi-cores
Design, architecture and engineering with GE
Computational creativity and GE
GE in the prediction of glucose for diabetes
GE approaches to bioinformatics and system genomics
GE with coevolutionary algorithms in cybersecurity
Evolving behaviour trees with GE for platform games
Business analytics and GE for the prediction of patient recruitment in multicentre clinical trials
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.