Vtome.ru - электронная библиотека

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems

  • Добавил: buratino
  • Дата: 5-01-2021, 10:30
  • Комментариев: 0
Название: Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems (Hybrid Computational Intelligence for Pattern Analysis and Understanding)
Автор: Vincenzo Piuri (Editor), Sandeep Raj (Editor), Angelo Genovese (Editor), Rajshree Srivastava (Editor)
Издательство: Academic Press
Год: 2020
Формат: epub
Страниц: 294
Размер: 48.3 Mb
Язык: English

Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more.
In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.
Provides insights into the theory, algorithms, implementation and the application of deep learning techniques
Covers a wide range of applications of deep learning across smart healthcare and smart engineering
Investigates the development of new models and how they can be exploited to find appropriate solutions











ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.