Vtome.ru - электронная библиотека

MATLAB & Simulink Computer Vision Toolbox User’s Guide

  • Добавил: literator
  • Дата: 26-12-2020, 21:09
  • Комментариев: 0
MATLAB & Simulink Computer Vision Toolbox User’s GuideНазвание: MATLAB & Simulink Computer Vision Toolbox User’s Guide
Автор: MathWorks, Inc.
Издательство: MathWorks, Inc.
Год: 2020 (Release R2020b)
Страниц: 1194
Язык: английский
Формат: pdf (true)
Размер: 51.0 MB

Design and test computer vision, 3D vision, and video processing systems.

Computer Vision Toolbox provides algorithms, functions, and apps for designing and testing computer vision, 3D vision, and video processing systems. You can perform object detection and tracking, as well as feature detection, extraction, and matching. For 3D vision, the toolbox supports single, stereo, and fisheye camera calibration; stereo vision; 3D reconstruction; and lidar and 3D point cloud processing. Computer vision apps automate ground truth labeling and camera calibration workflows.

You can train custom object detectors using deep learning and machine learning algorithms such as YOLO v2, Faster R-CNN, and ACF. For semantic segmentation you can use deep learning algorithms such as SegNet, U-Net, and DeepLab. Pretrained models let you detect faces, pedestrians, and other common objects.

You can accelerate your algorithms by running them on multicore processors and GPUs. Most toolbox algorithms support C/C++ code generation for integrating with existing code, desktop prototyping, and embedded vision system deployment.

Скачать MATLAB & Simulink Computer Vision Toolbox User’s Guide












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.