Vtome.ru - электронная библиотека

Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient

  • Добавил: literator
  • Дата: 10-12-2021, 17:23
  • Комментариев: 0
Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More EfficientНазвание: Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient
Автор: Tanay Agrawal
Издательство: Apress
Год: 2021
Страниц: 177
Язык: английский
Формат: pdf (true), epub
Размер: 10.2 MB

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.

This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you’ll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.

The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you’ll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.

Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.
Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.

What You Will Learn:

Discover how changes in hyperparameters affect the model’s performance.
Apply different hyperparameter tuning algorithms to data science problems
Work with Bayesian optimization methods to create efficient machine learning and deep learning models
Distribute hyperparameter optimization using a cluster of machines
Approach automated machine learning using hyperparameter optimization

Who This Book Is For:
Professionals and students working with machine learning.

Скачать Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.