Название: Идеи машинного обучения: от теории к алгоритмам Автор: Шалев-Шварц Ш. , Бен-ДавидШ. Издательство: ДMK Год: 2019 Cтраниц: 436 Формат: pdf (ocr) Размер: 13 мб Язык: русский
Машинное обучение — один из самых быстро развивающихся разделов информатики, с приложениями в самых разных областях. Цель этой книги — познакомить читателя с фундаментальными принципами машинного обучения и характерными для него алгоритмическими парадигмами. Книга содержит обширный свод основополагающих теоретических идей машинного обучения и математические выкладки, благодаря которым эти идеи становятся практическими алгоритмами. Вслед за изложением базовых основ дисциплины рассматривается широкий спектр тем, не нашедших достаточного отражения в предшествующих учебниках: вычислительная сложность обучения, понятия выпуклости и устойчивости, важные алгоритмы, включая стохастический градиентный спуск, нейронные сети и обучение структурированному выводу, а также совсем недавние теоретические концепции, например, PAC-байесовский подход и границы сжатия. Книга задумывалась как повышенный курс для студентов средних и старших курсов, фундаментальные основы и алгоритмы машинного обучения излагаются в форме, доступной студентам и читателям, не являющимся специалистами в области математической статистики, информатики, математики и технических дисциплин.
Скачать Шалев-Шварц Ш. , Бен-ДавидШ. Идеи машинного обучения
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.