Название: Differential Privacy and Applications Автор: Tianqing Zhu and Gang Li Издательство: Springer Год: 2017 Формат: PDF Размер: 10 Мб Язык: английский / English
This book focuses on differential privacy and its application with an emphasis on technical and application aspects. This book also presents the most recent research on differential privacy with a theory perspective. It provides an approachable strategy for researchers and engineers to implement differential privacy in real world applications.
Early chapters are focused on two major directions, differentially private data publishing and differentially private data analysis. Data publishing focuses on how to modify the original dataset or the queries with the guarantee of differential privacy. Privacy data analysis concentrates on how to modify the data analysis algorithm to satisfy differential privacy, while retaining a high mining accuracy. The authors also introduce several applications in real world applications, including recommender systems and location privacy
Advanced level students in computer science and engineering, as well as researchers and professionals working in privacy preserving, data mining, machine learning and data analysis will find this book useful as a reference. Engineers in database, network security, social networks and web services will also find this book useful.
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.