Vtome.ru - электронная библиотека

MACHINE LEARNING with NEURAL NETWORKS using MATLAB

  • Добавил: bhaer
  • Дата: 19-03-2017, 10:31
  • Комментариев: 0

Название: MACHINE LEARNING with NEURAL NETWORKS using MATLAB
Автор: J. Smith
Издательство: CreateSpace Independent Publishing
Год: 2017
Страниц: 382
Формат: PDF, EPUB
Размер: 16 Mb
Язык: English

Machine Learning is a method used to devise complex models and algorithms that lend themselves to prediction; in commercial use, this is known as predictive analytics. These analytical models allow researchers, data scientists, engineers, and analysts to produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data.

MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, dynamic system modeling and control and most machine learning techniques. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox.

The more important features are the following:

•Deep learning, including convolutional neural networks and autoencoders
•Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox)
•Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN)
•Unsupervised learning algorithms, including self-organizing maps and competitive layers
•Apps for data-fitting, pattern recognition, and clustering
•Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance
•Simulink® blocks for building and evaluating neural networks and for control systems applications












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.