Название: Data Quality Fundamentals: A Practitioner’s Guide to Building Trustworthy Data Pipelines (Final Release) Автор: Barr Moses, Lior Gavish, and Molly Vorwerck Издательство: O’Reilly Media, Inc. Год: 2022 Страниц: 311 Язык: английский Формат: pdf (true), epub, mobi Размер: 10.1 MB, 12.8 MB
Do your product dashboards look funky? Are your quarterly reports stale? Is the dataset you're using broken or just plain wrong? These problems affect almost every team, yet they're usually addressed on an ad hoc basis and in a reactive manner. If you answered yes to any of the questions above, this book is for you. Many data engineering teams today face the "good pipelines, bad data" problem. It doesn't matter how advanced your data infrastructure is if the data you're piping is bad. In this book, Barr Moses, Lior Gavish, and Molly Vorwerck from the data reliability company Monte Carlo explain how to tackle data quality and trust at scale by leveraging best practices and technologies used by some of the world's most innovative companies.
Build more trustworthy and reliable data pipelines Write scripts to make data checks and identify broken pipelines with data observability Program your own data quality monitors from scratch Develop and lead data quality initiatives at your company Generate a dashboard to highlight your company's key data assets Automate data lineage graphs across your data ecosystem Build anomaly detectors for your critical data assets
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.