- Добавил: literator
- Дата: 27-03-2023, 03:03
- Комментариев: 0
Название: Approximate Degree in Classical and Quantum Computing
Автор: Mark Bun, Justin Thaler
Издательство: Now Publishers
Серия: Foundations and Trends in Theoretical Computer Science
Год: 2023
Страниц: 203
Язык: английский
Формат: pdf (true), epub
Размер: 35.6 MB
The ability (or inability) to represent or approximate Boolean functions by polynomials is a central concept in complexity theory, underlying interactive and probabilistically checkable proof systems, circuit lower bounds, quantum complexity theory, and more. In this book, the authors survey what is known about a particularly natural notion of approximation by polynomials, capturing pointwise approximation over the real numbers. This book covers recent progress on proving approximate degree lower and upper bounds and describes some applications of the new bounds to oracle separations, quantum query and communication complexity, and circuit complexity. The authors explain how several of these advances have been unlocked by a particularly simple and elegant technique, called dual block composition, for constructing solutions to this dual linear program. They also provide concise coverage of even more recent lower bound techniques based on a new complexity measure called spectral sensitivity. Finally, they show how explicit constructions of approximating polynomials have been inspired by quantum query algorithms. This book provides a comprehensive review of the foundational and recent developments of an important topic in both classical and quantum computing.
Автор: Mark Bun, Justin Thaler
Издательство: Now Publishers
Серия: Foundations and Trends in Theoretical Computer Science
Год: 2023
Страниц: 203
Язык: английский
Формат: pdf (true), epub
Размер: 35.6 MB
The ability (or inability) to represent or approximate Boolean functions by polynomials is a central concept in complexity theory, underlying interactive and probabilistically checkable proof systems, circuit lower bounds, quantum complexity theory, and more. In this book, the authors survey what is known about a particularly natural notion of approximation by polynomials, capturing pointwise approximation over the real numbers. This book covers recent progress on proving approximate degree lower and upper bounds and describes some applications of the new bounds to oracle separations, quantum query and communication complexity, and circuit complexity. The authors explain how several of these advances have been unlocked by a particularly simple and elegant technique, called dual block composition, for constructing solutions to this dual linear program. They also provide concise coverage of even more recent lower bound techniques based on a new complexity measure called spectral sensitivity. Finally, they show how explicit constructions of approximating polynomials have been inspired by quantum query algorithms. This book provides a comprehensive review of the foundational and recent developments of an important topic in both classical and quantum computing.