Vtome.ru - электронная библиотека

Основы линейного функционального анализа

  • Добавил: Igor1977
  • Дата: 30-11-2022, 07:52
  • Комментариев: 0

Название: Основы линейного функционального анализа
Автор: Мельникова И.В.
Издательство: Екатеринбург : Издательство Уральского университета
Год: 2022
Формат: pdf
Страниц: 184
Размер: 10 mb
Язык: русский

В учебном пособии рассматриваются основные понятия, методы и приложения линейного функционального анализа. Теоретический материал сопровождается примерами, образцами решения некоторых задач и упражнениями для самостоятельного решения. Для студентов, изучающих дисциплину «Функциональный анализ» в рамках модулей «Теория функций», «Функциональный анализ», «Компьютерная и непрерывная математика».

Введение
Основные пространства
Метрические и линейные нормированные пространства
Сравнение норм
Полные пространства
Сепарабельные пространства
Евклидовы и гильбертовы пространства
Некоторые вопросы теории приближений
Ряды Фурье
Принцип сжимающих отображений
Пополнение пространств
Пространства Соболева
Операторы
Линейные операторы Пространство L (X , Y )
Первый принцип линейного анализа — принцип ограниченности
Функционалы. Сопряженные пространства
Второй принцип линейного анализа — принцип продолжимости
Функционалы на пространстве
Сопряженные операторы
Обратные операторы
Спектр оператора. Резольвента
Замкнутые операторы
Третий принцип линейного анализа — принцип обратимости
Компактные множества и компактные операторы
Вполне непрерывные операторы
Спектральные свойства вполне непрерывных операторов
Операторные уравнения
Уравнения второго рода. Теория Фредгольма (Рисса — Шаудера)
Уравнения первого рода.
Регуляризация некорректных задач
Дифференциально-операторные уравнения.
Примеры
Корректность абстрактной задачи Коши
Библиографические ссылки
Библиографический список












ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.