Geometry Transformed: Euclidean Plane Geometry Based on Rigid Motions
- Добавил: alex66
- Дата: 15-08-2021, 21:15
- Комментариев: 0
Название: Geometry Transformed: Euclidean Plane Geometry Based on Rigid Motions
Автор: James R. King
Издательство: American Mathematical Society
Год: 2021
Страниц: 284
Размер: 10,27 МБ
Формат: PDF
Язык: English
Many paths lead into Euclidean plane geometry. Geometry Transformed offers an expeditious yet rigorous route using axioms based on rigid motions and dilations. Since transformations are available at the outset, interesting theorems can be proved sooner; and proofs can be connected to visual and tactile intuition about symmetry and motion. The reader thus gains valuable experience thinking with transformations, a skill that may be useful in other math courses or applications.
For students interested in teaching mathematics at the secondary school level, this approach is particularly useful since geometry in the Common Core State Standards is based on rigid motions.\n\nThe only prerequisite for this book is a basic understanding of functions. Some previous experience with proofs may be helpful, but students can also learn about proofs by experiencing them in this book―in a context where they can draw and experiment. The eleven chapters are organized in a flexible way to suit a variety of curriculum goals. In addition to a geometrical core that includes finite symmetry groups, there are additional topics on circles and on crystallographic and frieze groups, and a final chapter on affine and Cartesian coordinates. The exercises are a mixture of routine problems, experiments, and proofs.
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.