Книга посвящена задаче о топологической сопряжённости отображений. В монографии приводится её алгоритмическое решение для обобщённых псевдоаносовских гомеоморфизмов как ориентируемых, так и неориентируемых поверхностей. Это решение основано на рассмотрении марковских разбиений некоторого специального вида (ленточные разбиения) и на их описании посредством конечного набора данных (кода). Описывается универсальный способ построения обобщённого псевдоаносовского гомеоморфизма. В качестве следствия рассматривается задача об алгоритмическом перечислении обобщённых псевдоаносовских гомеоморфизмов и строятся их примеры с заданными геометрическими и динамическими характеристиками. Изложение сопровождается примерами, иллюстрирующими все рассматриваемые конструкции и алгоритмы.
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.