Название: Введение в функциональный анализ Автор: Вулих Б.3. Издательство: Наука Год: 1967 Формат: DjVu Страниц: 417 Размер: 10 MB Язык: Русский
Книга содержит элементарное изложение основ функционального анализа. В первых двух главах изучается конечно-мерное эвклидово пространство, и на этом примере читатель подготовляется к введению в последующих главах общих абстрактных понятий функционального анализа. Далее рассматриваются метрические пространства и непрерывные операторы в них. Вводится основной класс пространств, изучаемых в книге, — нормированные пространства. Отдельная глава посвящена гильбертову пространству, которое вводится как частный случай нормированного пространства. Даются обе классические реализации бесконечно-мерного сепарабелыюго гильбертова пространства — координатная и функциональная. Попутно указываются два подхода к построению функциональной реализации гильбертова пространства: обычная конструкция пространства функций, суммируемых с квадратом, и построение пространства, составленного из функций промежутка, иными словами, функций, задаваемых своими средними значениями. В книге изучаются также линейные операторы и функционалы в нормированных пространствах, проводится специальное исследование самосопряженных, в частности, вполне непрерывных самосопряженных операторов в гильбертовом пространстве. Даются краткие сведения о применении методов функционального анализа к приближенному решению функциональных уравнений. В конце книги приводятся краткие сведения о счетно-нормированных и полуупорядоченных пространствах. Общая теория иллюстрируется многими примерами из алгебры, анализа, теории функций, дифференциальных и интегральных уравнений. От читателя требуется знание лишь основ математического анализа, и только в некоторых местах предполагается знакомство с интегралом Лебега.
Скачать Вулих Б.3. - Введение в функциональный анализ [1967, DjVu]
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.