Vtome.ru - электронная библиотека

Спинорные методы в теории групп и поляризационной оптике

  • Добавил: umkaS
  • Дата: 28-02-2021, 16:43
  • Комментариев: 0
Название: Спинорные методы в теории групп и поляризационной оптике
Автор: О.В. Веко, Е.М. Овсиюк, В.В. Кисель, В.М. Редьков
Издательство: Беларуская навука
Год: 2019
Cтраниц: 410 с. : ил.
Формат: pdf (ocr)
Размер: 20 мб
Язык: русский

В монографии развито применение линейной параметризации группы GL(4,C) комплексных преобразований в 4-мерном пространстве. За основу берется возможность любую (4×4)-мерную матрицу раскладывать по 16-мерному базису матриц Дирака, тем самым получая унифицированную параметризацию группы и всех ее подгрупп. Изучен вопрос о линейной параметризации унитарной группы SU(4). Исследовано дираковское представление матриц Гелл-Манна. Формализм применен к развитию математического аппарата поляризационной оптики Стокса–Мюллера и Джонса, при этом демонстрируется единство математических методов описания симметрии в релятивистской физике с методами, которые используются в поляризационной оптике. В частности, рассмотрено применение в поляризационной оптике 2- и 4-мерных спиноров; восстановление 3- и 4-мерных матриц Мюллера по поляризационным измерениям; приведение мюллеровских квадратичных форм к диагональному виду; описание преобразований Мюллера общего типа подмножествами вырожденных матриц со структурой полугрупп; классификация таких вырожденных преобразований и др.
Адресуется научным работникам, преподавателям высших учебных заведений, а также аспирантам и студентам, специализирующимся в области теоретической физики.

Скачать О.В. Веко, Е.М. Овсиюк, В.В. Кисель, В.М. Редьков - Спинорные методы в теории групп и поляризационной оптике













ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.