- Добавил: literator
- Дата: 8-04-2023, 06:54
- Комментариев: 0
Название: Applications of Deep Learning in Electromagnetics: Teaching Maxwell's equations to machines
Автор: Maokun Li, Marco Salucci
Издательство: Scitech Publishing
Год: 2023
Страниц: 480
Язык: английский
Формат: pdf (true)
Размер: 31.9 MB
Deep Learning has started to be applied to solving many electromagnetic problems, including the development of fast modelling solvers, accurate imaging algorithms, efficient design tools for antennas, as well as tools for wireless links/channels characterization. The contents of this book represent pioneer applications of Deep Learning techniques to electromagnetic engineering, where physical principles described by the Maxwell's equations dominate. With the development of Deep Learning techniques, improvement in learning capacity and generalization ability may allow machines to "learn" from properly collected data and "master" the physical laws in certain controlled boundary conditions. In the long run, a hybridization of fundamental physical principles with knowledge from training data could unleash numerous possibilities in electromagnetic theory and engineering that used to be impossible due to the limit of data information and ability of computation. Electromagnetic applications of Deep Learning covered in the book include electromagnetic forward modeling, free-space inverse scattering, non-destructive testing and evaluation, subsurface imaging, biomedical imaging, direction of arrival estimation, remote sensing, digital satellite communications, imaging and gesture recognition, metamaterials and metasurfaces design, as well as microwave circuit modeling.
Автор: Maokun Li, Marco Salucci
Издательство: Scitech Publishing
Год: 2023
Страниц: 480
Язык: английский
Формат: pdf (true)
Размер: 31.9 MB
Deep Learning has started to be applied to solving many electromagnetic problems, including the development of fast modelling solvers, accurate imaging algorithms, efficient design tools for antennas, as well as tools for wireless links/channels characterization. The contents of this book represent pioneer applications of Deep Learning techniques to electromagnetic engineering, where physical principles described by the Maxwell's equations dominate. With the development of Deep Learning techniques, improvement in learning capacity and generalization ability may allow machines to "learn" from properly collected data and "master" the physical laws in certain controlled boundary conditions. In the long run, a hybridization of fundamental physical principles with knowledge from training data could unleash numerous possibilities in electromagnetic theory and engineering that used to be impossible due to the limit of data information and ability of computation. Electromagnetic applications of Deep Learning covered in the book include electromagnetic forward modeling, free-space inverse scattering, non-destructive testing and evaluation, subsurface imaging, biomedical imaging, direction of arrival estimation, remote sensing, digital satellite communications, imaging and gesture recognition, metamaterials and metasurfaces design, as well as microwave circuit modeling.