Vtome.ru - электронная библиотека

Methods & Techniques in Deep Learning: Advancements in mmWave Radar Solutions

  • Добавил: literator
  • Дата: 24-11-2022, 14:02
  • Комментариев: 0
Methods & Techniques in Deep Learning: Advancements in mmWave Radar SolutionsНазвание: Methods & Techniques in Deep Learning: Advancements in mmWave Radar Solutions
Автор: Avik Santra, Souvik Hazra, Lorenzo Servadei
Издательство: Wiley-IEEE Press
Год: 2023
Страниц: 332
Язык: английский
Формат: pdf (true)
Размер: 16.7 MB

Introduces multiple state-of-the-art Deep Learning architectures for mmwave radar in a variety of advanced applications.

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions provides a timely and authoritative overview of the use of Artificial Intelligence (AI)-based processing for various mmwave radar applications. Focusing on practical Deep Learning techniques, this comprehensive volume explains the fundamentals of Deep Learning, reviews cutting-edge deep metric learning techniques, describes different typologies of reinforcement learning (RL) algorithms, highlights how domain adaptation (DA) can be used for improving the performance of Machine Learning (ML) algorithms, and more. Throughout the book, readers are exposed to product-ready Deep Learning solutions while learning skills that are relevant for building any industrial-grade, sensor-based Deep Learning solution.

A team of authors with more than 70 filed patents and 100 published papers on AI and sensor processing illustrate how deep learning is enabling a range of advanced industrial, consumer, and automotive applications of mmwave radars. In-depth chapters cover topics including multi-modal deep learning approaches, the elemental blocks required to formulate Bayesian deep learning, how domain adaptation (DA) can be used for improving the performance of Machine Learning algorithms, and geometric deep learning are used for processing point clouds. In addition, the book:

Discusses various advanced applications and how their respective challenges have been addressed using different deep learning architectures and algorithms
Describes deep learning in the context of computer vision, natural language processing, sensor processing, and mmwave radar sensors
Demonstrates how deep parametric learning reduces the number of trainable parameters and improves the data flow
Presents several human-machine interface (HMI) applications such as gesture recognition, human activity classification, human localization and tracking in-cabin automotive occupancy sensing

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions is an invaluable resource for industry professionals, researchers, and graduate students working in systems engineering, signal processing, sensors, data science and AI.

Скачать Methods & Techniques in Deep Learning: Advancements in mmWave Radar Solutions



ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!










ПРАВООБЛАДАТЕЛЯМ


СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ



Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.