Название: Smart membranes and sensors: synthesis, characterization, and applications Автор: Annarosa Gugliuzza Издательство: Hoboken, New Jersey: John Wiley and Sons, Inc. Год: 2014 Формат: pdf Страниц: 448 Размер: 11,6 mb Язык: English
This book facilitates the access to the various disciplines, highlighting their many points of contacts and making the clear the message that membrane-based sensors represent the future of the research in every field, including chemistry, biology, biomedicine, textiles, and electronics.
1 Interfaces Based on Carbon Nanotubes, Ionic Liquids and Polymer Matrices for Sensing and Membrane Separation Applications 3 Maria Bel?n Serrano-Santos, Ana Corres Ortega and Thomas Schafer
1.1 Introduction 3 1.2 Ionic Liquid-Carbon Nanotubes Composites for Sensing Interfaces 5 1.3 Ionic Liquid Interfaces for Detection and Separation of Gases and Solvents 11 1.4 Ionic Liquid-Polymer Interfaces for Membrane Separation Processes 16 1.5 Conclusions 18 Acknowledgement 19 References 19 2 Photo-Responsive Hydrogels for Adaptive Membranes 21 David Diaz Diaz and Jeremiah A. Johnson
3 Smart Vesicles: Synthesis, Characterization and Applications 53 Jung-Keutt Kim, Chang-Soo Lee and Eunji Lee
3.1 Introduction 53 3.2 Synthesis of Soft Vesicles 54 3.2.1 Self-assembly into Vesicles 55 3.2.2 Liposomes 55 3.2.3 Polymersomes 57 3.2.4 Vesicles based on Small Molecules 59 3.2.5 Direct Synthesis 62 3.3 Synthesis of Hard Vesicles 64 3.3.1 “Soft” Templates for the Synthesis of Hard Vesicles 64 3.3.2 Hollow Silica Spheres 66 3.4 Characterization of Vesicular Structures 68 3.4.1 Microscopy 69 3.4.2 Scattering 69 3.5 Stimuli-Responsive Behaviors of Vesicular Structures 72 3.5.1 Thermo-Responsive Vesicles 72 3.5.2 pH-Responsive Vesicles 74 3.5.3 Others 76 3.6 Application of Vesicles 78 3.6.1 Molecular Separation by Vesicles 79 3.6.2 Chemical Sensors 81 3.6.3 Nanoreactors and Microreactors 84 3.6.4 Catalysts 86 3.6.5 Drug Delivery Vehicles 89 3.7 Conclusions 91 Acknowledgment 92 References 92
Part 2: Stimuli-Responsive Interfaces 105
4 Computational Modeling of Sensing Membranes and Supramolecular Interactions 107 Giacomo Saielli
4.1 Introduction 107 4.2 Non-covalent Interactions: A Physical and a Chemical View 109 4.3 Physical Interactions 109 4.4 Chemical Interactions 114 4.5 Computational Methods for Supramolecular Interactions 117 4.6 Classical Force Fields 127 4.7 Conclusions 139 References 140
5 Sensing Techniques Involving Thin Films for Studying Biomoiecular Interactions and Membrane Fouling Phenomena 145 Gabriela Diaconu and Thomas Sch?fer
7 Model Bio-Membranes Investigated by AFM and AFS: A Suitable Tool to Unravel Lipid Organization and their Interaction with Proteins 185 Andrea Alessandrini and Paolo Facci
7.1 Introduction 186 7.2 Supported Lipid Bilayers 189 7.2.1 Preparation Techniques 189 7.2.2 Chemical-Physical Properties of Supported Lipid Bilayers 191 7.2.3 Transmembrane Protein Inclusion 197 7.3 Atomic Force Microscopy (AFM) and Phase Behavior of Slbs 199 7.3.1 Transitions Induced by Temperature 199 7.3.2 Transitions Induced by pH 204 7.4 Atomic Force Spectroscopy (AFS) of Supported Lipid Bilayers 205 7.4.1 Mechanical Moduli Studied by AFS 208 7.4.2 Energy Landscape of Lipid Bilayer Breakthrough and Comparison with Lipid Pore Formation 210 7.5 Lipid/Protein Interactions 213 7.5.1 Protein Partitioning in Membrane Domains 213 7.5.2 Functional Relevance of Partitioning 216 7.6 Conclusions 218 References 218
Part 3: Directed Molecular Separation 227
8 Self-Assembled Nanoporous Membranes for Controlled Drug Release and Bioseparation 229 Dominique Scalarone, Pierangiola Bracco and Francesco Trotta
8.1 Introduction 229 8.2 General Aspects of Block Copolymer Self-Assembly 231 8.3 Block Copolymer Based Membranes 233 8.4 Fabrication of Nanoporous Membranes Derived from Block Copolymers 234 8.4.1 Structure of Nanoporous Membranes: Composite and Stand-alone Membranes 234 8.4.2 Controlling Ordering and Orientation in Block Copolymer Derived Membranes 238 8.4.3 Pore Generation in Nanostructured Polymer Films 241 8.5 Tunability of Surface Properties 242 8.6 Application of Block Copolymer Derived Membranes to Bioseparation and Controlled Drug Release 244 8.7 Conclusion 250 References 250 Abbreviations 253 9 Hybrid Mesoporous Silica for Drug Targeting 255 Luigi Pasqua, Piluso Rosangela, Ilenia Pelaggi and Catia Morelli
9.1 Introduction 256 9.2 Synthesis and Characterization of Bifunctional Hybrid Mesoporous Silica Nanoparticles Potentially Useful for Drug Targeting 257 9.3 Drug-Loaded Folic-Acid-Grafted Msns Specifically Target FR Expressing Tumour Cells [ 16] 260 9.4 Conclusion 266 References 268
10 Molecular Recognition-driven Membrane Processes 269 Laura Donato, Rosalinda Mazzei, Catia Algieri, Emma Piacentini, Teresa Poerio and Lidietta Giorno
10.1 Molecular Imprinting Technique 270 10.1.1 Molecularly Imprinted Membranes (MIMs) 271 10.1.2 MIMs Preparation: Methods And Materials 271 10.1.3 Application Of MIMs 273 10.2 Affinity Membranes 275 10.2.1 Preparation Of Affinity Membranes 276 10.2.2 Affinity Membranes For Chiral Separation 279 10.2.3 Affinity Membranes For Protein Separation 280 10.3 Cyclodextrins As Molecular Recognition Elements 281 10.4 Zeolite Membranes as Molecular Recognition Devices: Preparation and Characterization 283 10.4.1 Zeolite Membranes In Pharmaceutical Field 284 10.4.2 Zeolite: Materials For Sensors 286 10.5 Functionalized Particles-loaded Membranes For Selective Separation Based On Molecular Recognition 287 10.6 Biphasic Enzyme Membrane Systems with Enantioselective Recognition Properties for Kinetic Resolution 291 10.7 Membrane Surface Modification 292 10.7.1 Coating 292 10.7.2 Self-assembly 293 10.7.3 Chemical Treatment 293 10.7.4 Plasma Treatment 294 10.7.5 Graft Polymerization 294 References 296
Part 4: Membrane Sensors and Challenged Applications 301
11 Electrospun Membranes for Sensors Applications 303 Pierattgiola Bracco, Dominique Scalarone and Francesco Trotta
11.1 Introduction 303 11.2 Basic Principles of Electrospinning 304 11.3 Control of the Electrospinning Process 306 11.3.1 Fibers Morphology and Diameter 306 11.3.2 Fibers Arrangement, Composition and Secondary Structure 308 11.4 Application of Electrospun Materials to Ultrasensitive Sensors 311 11.4.1 Metal-Oxide-Based Resistive Sensors 311 11.4.2 Conducting Polymer Based Resistive Sensors 316 11.4.3 Optical Sensors 319 11.4.4 Acoustic Wave Sensors 322 11.4.5 Amperometric Biosensors 325 11.5 Conclusions 329 Abbreviations 330 References 330
12 Smart Sensing Scaffolds 337 Carmelo De Maria, Yudatt U hulanza, Giovanni Vozzil and Arti Ahlnwalia
13 Nanostructured Sensing Emulsion Droplets and Particles: Properties and Formulation by Membrane Emulsification 367 Emma Piacentini, Alessandra Imbrogno and Lidietta Giorno
13.1 Introduction 367 13.2 Emulsions and Emulsification Methods 370 13.2.1 Rotor-stator Systems 370 13.2.2 High-pressure Homogenizer 371 13.2.3 Ultrasonication 371 13.2.4 Membrane Emulsification 371 13.2.5 Membrane Parameters 375 13.2.6 Phase Parameters 376 13.2.7 Process Parameters in Dynamic Membrane Emulsification 377 13.2.8 Membrane Emulsifications Devices 378 13.2.9 Material nature and sensing properties 380 13.2.10 Temperature and pH responsive-materials 380 13.2.11 Physical Sensitive Material (Light, Magnetic and Electrical Field) 386 13.2.12 Biochemical Responsive Materials 387 13.2.13 Phase Change Material (PCM) 388 13.3 Senging Particles Produced by Membrane-Based Process 389 13.3.1 Temperature and pH Responsive-materials 389 13.3.2 Biochemical Responsive Materials 392 13.3.3 Physical Sensitive Material 395 13.3.4 Molecular Imprinting 397 13.4 Conclusions 397 References 398
14 Membranes for Ultra-Smart Textiles 401 Annarosa Gugliuzza and Enrico Drioli
14.1 Introduction 401 14.2 Membranes and Comfort 403 14.2.1 Breathable Membranes 404 14.2.2 Membranes as Heat Exchangers 406 14.3 Adaptive Membranes for Smart Textiles 407 14.3.1 Shape Memory-based Membranes 408 14.3.2 Responsive Gel-based Membranes 409 14.3.3 Phase Changing Materials (PCMs) in Membranes 410 14.3.4 Photochromie Compounds for Smart Membranes 411 14.4 Barrier Functions of Membranes 411 14.4.1 Waterproof Function 412 14.4.2 Antibacterial Action 412 14.4.3 Scents Release and Superabsorbent Action 412 14.4.4 Warfare Agent Defense 413 14.5 Membrane Materials for Self-cleaning Function 413 14.6 Interactive Membranes for Wearable Electronics 414 14.7 Conclusions and Prospects 415 References 416
Внимание
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.